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An examination of three common thermodynamic cycles developed for detonation-based
engine analysis, namely the Humphrey, Fickett–Jacobs and Zel’dovich–von Neumann–
Döring, shows that the last one is the most appropriate in capturing the essential physics
in a one-dimensional framework. It is suggested that a local thermodynamic equilibrium
assumption be invoked for the shock and heat release processes. An engineering approach
to constructing the ZND cycle and the need for precompression are addressed.

I. Introduction

Airbreathing pulse detonation engines (PDEs) have been developed because they have the potential to
yield better performance than existing deflagration-based engines in terms of improved thermodynamic

efficiency, simplicity of manufacture and operation, compactness and weight, amongst others. As is the
case with all other heat engines, the theoretical performance of PDEs using thermodynamic cycle analysis
requires an accurate thermodynamic model. The focus of this paper is to evaluate different models that have
been applied to PDEs. The study is limited in scope to ideal thermodynamic cycles and it does not consider
in detail various elements that form an actual propulsion system.

Thermodynamic cycle analysis of heat engines is a standard technique for understanding the relationship
between energy, heat and work involving simple compressible substances. Thermodynamic cycle analysis
requires that the state of the system changes under the assumption of a quasi-static or equilibrium process.1

Such a process is sufficiently slow for the system to be close to the equilibrium state so that all properties
within the system are uniform. Another assumption is that gradients are infinitesimally small. Moreover,
these assumptions are applied to cycles involving combustion with disregard to further complications involv-
ing chemical nonequilibrium. For most thermodynamic processes of engineering interest, the equilibrium
and uniformity assumptions are sufficient, at least in terms of serving as idealizations of actual processes. In
particular, the Brayton cycle is used to idealize a gas turbine engine where a working fluid is isentropically
compressed, isobarically heated, isentropically expanded and then isobarically cooled in a closed cycle. In
fact, the isobaric heating process is due to the combustion of the working fluid, in this case, air, with a fuel, a
nonequilibrium process. In summary, the actual processes in a heat engine are idealized to allow engineering
analysis to proceed.

Turning to a different type of engine that utilizes shocks or detonation waves, perhaps the first practical
implementation of cycle analysis for an engine with non-isobaric heat addition was by Humphrey.2 This
analysis approach paved the way for considering engines with shocks or detonation waves. Prior to this
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invention, development of the Chapman–Jouguet (CJ) theory for one-dimensional propagation of detonation
waves occurred.3,4 In the CJ theory, chemical reactions are modeled as a heat release in an infinitesimally
thin, shock front that brings the material from an initial state on the inert Hugoniot to the subsequent state,
known as the CJ point, on the reactive Hugoniot.5,6 The CJ point is also the tangent from the initial state
to the final state on a p–v diagram. This tangent line can be shown to be equal to the Rayleigh heating
process.

Despite the occurrence of a detonation in Humphrey’s engine, the process is strictly a constant volume
one. Thus, Humphrey did not apply the CJ theory but developed a cycle based on constant volume heat
addition, followed by an isentropic expansion and an isobaric heat rejection. This basic, three-step process
is now known as the Humphrey cycle. Some authors add an additional, isentropic precompression process.a

Subsequent to the CJ theory, Zel’dovich, von Neumann and Döring independently developed a more
elaborate one-dimensional theory now known as the Zel’dovich–von Neumann–Döring (ZND) theory.7–9 In
this theory, the propagating detonation wave consists of a shock that raises the initial state to an intermediate,
von Neumann state, also known as the ZND point, which triggers the chemical reactions. Unlike the CJ
theory where the heat release occurs instantly, the ZND theory allows the heat release to occur from the
ZND to the CJ point. The ZND→CJ path is the straight line tangent to the CJ point and can be viewed as
supersonic heat addition that drives the flow to the sonic, CJ point. This straight line, upon extrapolation,
reaches the initial state.

Cycle analysis of PDEs has been performed, for example, in Refs. [10]–17] to name a few. Cycle analysis
in detonation systems poses a number of difficulties associated with the unsteady flow. The first and simplest
approach is to ignore the high-speed flow due to the shock and utilize the Humphrey cycle.11–13,15,16 As
remarked by Heiser and Pratt,10 the Humphrey cycle while used as a surrogate for the actual PDE cycle
produces a value of the thermal efficiency which is close to but less than that of an ideal PDE cycle.

Two other cycles have also been used. These utilize either the CJ or the ZND models, although sophis-
ticated techniques involving numerical modeling have also been developed.14 The so-called Fickett–Jacobs
cycle relies on the CJ model for the detonation.18 In this cycle, the CJ point is approached via a Rayleigh
heat addition process, that is, along the tangent in the p–v diagram. The working gas is then expanded
isentropically to the initial pressure and the cycle is closed by isobaric heat rejection.

A number of authors, however, consider that the most appropriate cycle is based on the ZND model.10

This model is known as the ZND cycle in the current. In the ZND cycle, the working gas is compressed to the
ZND point along the shock hugoniot. While it is understood that the shock process is a nonequilibrium one,
the consensus is that this process can be represented along the inert hugoniot, invoking the local thermody-
namic equilibrium (LTE) assumption. As applied here, LTE implies that the system is close to equilibrium
and requires that the thermodynamic state evolves incrementally. Arguments for and against such an as-
sumption abound which even question the basis of equilibrium thermodynamics.19,20 It suffices to say that
the LTE assumption for shock compression is consistent with other assumptions in ideal thermodynamic
cycle analysis.

Next, Rayleigh heat release brings the gas from the ZND point to the CJ point. Subsequently, depending
on the upstream boundary conditions, the gas generally undergoes an isentropic expansion, known as the
Taylor expansion. The theoretical cycle closes when the gas returns to its initial state via isobaric heat rejec-
tion. Experimental observations indicate that the detonation front is actually a complex, three-dimensional
surface that defies any simplified analytical description. Thus, despite the one-dimensional nature of the
ZND model, it is presently acceptable for engineering analysis.

A. The Shock Compression Process for PDE Applications

Without attempting an esoteric discussion of nonequilibrium thermodynamics, consider instead an engineer-
ing approach limiting consideration to conditions expected in detonation-based engines. Consider a shock

aNote the similarity between the Humphrey cycle and the Otto cycle which is used to model the four-stroke internal
combustion engine.
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Table 1. Downstream conditions assuming equilibrium or frozen flow.

Gas
p (bar) T (K) h (kJ/kg)

Equilibrium Frozen Equilibrium Frozen Equilibrium Frozen

Air 27.9 27.9 1510 1513 1349 1349

O2 + N2 28 27.9 1506 1507 1358 1358

He + O2 + N2 28.2 28.1 1600 1604 1625 1625

Ar + O2 + N2 28.2 28.1 1600 1604 1295 1295

H2 + O2 + N2 15.8 27.8 2946 1531 1355 1874

wave propagating through a nonreactive mixture and a reactive mixture at an incident Mach number of
4.82 which corresponds to a speed of 1600–1800 m/s depending on the gas. This Mach number is typical
of those due to propagating detonation waves and, in fact, is that of a stoichiometric hydrogen–air mixture.
Data obtained from the NASA Chemical Equilibrium Application (CEA) code21 for the downstream state
with the gases initially at STP are displayed in Table 1. The first four rows for nonreactive gas mixtures
show that the downstream states for either the equilibrium or frozen assumption are practically the same.
It is next surmised that the approach to the final state occurs via LTE, that is, the path is along the inert
hugoniot. This surmise has some support through consideration of the reactive mixture. The mixture first
attains a state dictated by the ZND theory which is along the inert hugoniot. This step is similar to that
of the nonreactive mixtures and yields the frozen condition. Next, the reactive mixture attains equilibrium
through heat release.

II. The Cycles

While cycle analysis typically considers a generic working fluid, a specific reactant mixture and initial
conditions are used here to facilitate the comparison. Consider a stoichiometric air and oxygen mixture
initially at STP. Equilbrium conditions are obtained from the NASA CEA code21 while nonequilibrium
chemistry is obtained via Cantera.22 Figure 1 shows the three ideal processes under discussion in both the
p–v and T–s diagrams, portraying the total (or stagnation) states. The initial state of the reactants is (1).
The hugoniot running through (1) is shown in Fig. 1(a) as a dashed line. The post-detonation hugoniot is
also shown in the figure by another dashed line. This hugoniot was obtained using data obtained from the
NASA CEA code,21 yielding a dimensionless heat release α = qρ1/p1 = 27.28.

A. The Humphrey Cycle

As shown in Fig. 1, the gas, initially at (1) is compressed isochorically to state (2H) where p2H = 0.8 MPa
and T2H = 2550 K. The gas then expands isentropically to reach (3H) where p3H = 0.1 MPa and T3H = 1520
K. The increase in entropy from (1) to (3H) is Δs = 3.08 kJ/(kg · K). The cycle is closed by a fictitious
isobaric process (3H) → (1) of heat rejection to the open ambient conditions. A single value of specific heat
ratio γ = 1.242 appears sufficient for such an analysis but with R = 348 kJ/(kg ·K) and 396 kJ/(kg ·K) for
the isochoric compression and for the isentropic expansion respectively.

B. The Fickett–Jacobs Cycle

The FJ cycle, as can be seen in Fig. 1, consists of a compression and heat addition process that brings the
gas from state (1) to state (2CJ). This process is strictly a nonequilibrium one. Recall that the CJ theory
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(a) p–v diagram.

(b) T –s diagram.

Figure 1. Ideal Humphrey (1 → 2H → 3H → 1), FJ (1 → 2CJ → 3CJ → 1) and ZND (1 → 1′ → 2CJ → 3CJ → 1)
cycles for a stoichiometric hydrogen/air mixture initially at STP.
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assumes an instantaneous heat release (unlike the more elaborate ZND theory). Within the one-dimensional
model of the detonation process, this process is identical to Rayleigh heating and thus can be regarded to
be a process that is in local thermodynamic equilibrium.23,24 In other words, the tangent from (1) to (2CJ)
in the p-v diagram is the same path as that of Rayleigh heating. Isentropic expansion occurs between (2CJ)
and (3CJ) after which the cycle is closed by a fictitious isobaric process to the initial state.

Specifically for a hydrogen–air mixture initially at STP, p2CJ = 1.5 MPa and decreases the specific volume
to v2CJ = 0.67 m3/kg with the same dimensionless heat release α = 27.28 as for the Humphrey cycle. The
isentropic expansion from (2CJ) to (3CJ) yields p3CJ = 0.1 MPa and v3CJ = 5.92 m3/kg respectively.
Finally, a fictitious isobaric process returns both pressure and specific volume to the initial state.

While the calculations of (p2CJ , v2CJ) are straightforward, (T2CJ , s2CJ) are more complicated to de-
termine. The value of the gas constant changes from (1′) to (2CJ) as, for example, in computations using
Cantera.22 For simplicity, a linear variation of R between the value at state (1′) and (2CJ) is accurate for
modeling the nonequilibrium heat release, which coincided with the equilibrium Rayleigh heat release. The
temperature rises from the ZND value of 1545 K to 2920 K and the entropy rises by 3.12 kJ/(kg · K). The
gas then expands isentropically from (2CJ) to (3CJ). State (3CJ) is different from state (3H) because the
isentropic expansions arise from the different states (2CJ) and (2H) state, respectively. The values of p3CJ ,
v3CJ and T3CJ are 0.1 MPa, 5.922 m3/kg and 1562 K respectively.

For cycle analysis, the tangency relationship must be used to evaluate the CJ point exactly, namely,

vCJ =
[
1
4
(1 + γ − γ2 − 3γ3 − 2α(1 − 3γ − γ2 + 3γ3) − v1(−2 + 4γ2 − 2γ3 + 2α(−1 + γ2) − (−1 + 3γ2)v1))

((−3 − γ + 5γ2 + γ3 + 2α(−1 + γ2) + 2α(1 − 3γ − γ2 + 3γ3) − (−1 + 3γ2)v1)2

−4(−3 − 2γ − 2γ2 − 4γ3 − 4α(−1 − γ + γ2 + γ3) + (2γ2 + 2γ3)v1)(−1 + γ + γ2 − γ3

−2α(−1 + 3γ − 3γ2 + γ3) + v1(−2γ2 + 2γ3 + 2(1 − γ − γ2 + γ3)(α + v1))))
]

/[−3− 2γ − 2γ2 − 4γ3 − 4α(−1 − γ + γ2 + γ3) + (2γ2 + 2γ3)v1] (1)

(Details in the derivation of Eq. (1) are found in Appendix A.) This is because the CJ point from an
equilibrium calculation, say, using CEA is slightly different from that obtained from a nonequilibrium one,
say, using Cantera. Thus, for simplicity, a tangent is cast from the inert to the reactive hugoniot whose
intersection is the CJ point.

A similar difficulty is encountered in evaluating TCJ due to the variation of the gas constant R from
the initial point. It was found that a linear variation of value of R from (1) to (2CJ) is satisfactory to
describe this path in the T–s diagram, which is necessary for cycle analysis for the same reason as above.
In summary, the properties at (2CJ) are a total pressure of 1.5 MPa, a total specific volume of 0.67 m3/kg,
a total temperature of 2920 K and an increase of entropy to 3.12 kJ/(kg · K). The FJ cycle then allows the
gas to expand isentropically to (3CJ). The properties here at a total pressure of 0.1 MPa, a total specific
volume of 5.92 m3/kg, a total temperature of 1515 K.

C. Zel’dovich–von Neumann–Döring Cycle

The two-step process of the ZND model is shown in Fig. 1 by (1) → (1′) → (2CJ) as described previously.
There are no ambiguities in determining (1′) for a real mixture. Calculations using Cantera yield total
postshock pressure and specific volume as 2.8 MPa and 0.22 m3/kg respectively. The subsequent CJ value is
the same as the FJ cycle reported above. This is followed by the same isentropic expansion as the FJ cycle,
followed by a fictitious isobaric process to close the cycle. Moreover, the shock compression to the ZND
point raises the temperature to 1531 K with an entropy increase to 1.366 kJ/(kg · K). The heat addition
that brings the gas from the ZND to the CJ point raises the temperature to 2920 K with a further increase
of entropy to 3.12 kJ/(kg · K). From Cantera, the gas constant at these two points are 397.6 and 348.22
kJ/(kg · K) respectively. The isentropic expansion to 1 atm lowers the gas temperature to 1515 K. Finally,
a fictitious isobaric process closes the cycle.
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(a) Shock wave followed
by isentropic expansion.

(b) Detonation wave fol-
lowed by isentropic ex-
pansion.

Figure 2. The two-step ZND process for a detonation
wave.

It is now proposed that the work in a ZND cycle
is split into a part that is not available and another
that is available, these being known as internal and
external work respectively. Consider a shock wave as
shown in Fig. 2(a). States (1) and (1′) in the figure
refer to the same states as in Fig. 1(a). Figure 2(a)
shows an isentropic expansion to state (4) which is
shown in Fig. 1(a) by a dotted line. Now, for the
control volume to remain stationary, a force must be
exerted to equal the change in momentum flux from
(1) to (4) with p4 = p1. In other words, thrust work
must be done which is equal to the area enclosed
by the path (1) →

shock
(1′) → (4) → (1) in Fig. 1(a).

This is known as internal work which imparts internal energy to sustain the shock and is unavailable for
work production.

Turning next to a detonation wave as shown in Fig. 2(b), the process now includes the heat release
from (1′) to (2CJ) in the induction zone followed by an isentropic expansion to state (3CJ). The total work
available is equal to the area enclosed by the path (1) →

isen
(1′) → (2CJ) → (3CJ) → (1). However, based on

the above discussion, a certain portion of the work is unavailable. Only the difference in the areas of the two
paths in Fig. 1(a) is available, this being known as the external work.

D. Summary

A consideration of the thermodynamics of the Humphrey, FJ and ZND cycles reveals that drastic assumptions
are made for all of them to gain some tractability. Of these, it is suggested that the ZND cycle models
the actual PDE engine with the proper physics. To summarize, for engineering analysis, we examine the
discrepancies in cycle performance due to the three models. The net work out, net heat in and the efficiency
are given respectively by

wout =
∮

Pt dv (2a)

qt,in =
∮

Tt ds (2b)

η = wout/qt,in (2c)

where the subscript t is used to indicate that the total property is being considered. Note that while the same
Eq. (2a) is used for the three cycles, the ZND cycle requires that the internal work be neglected. Evaluating
the above equations yield results displayed in Table 2. Note that these are cyclic values. A peculiarity of
pulse detonation engines is that the cyclic values are likely much larger than the time-averaged values, the
latter being dependent on the number of cycles per unit time. When the time required for the fill and purge
processes are included, then performance parameters such as power or thrust, depending on whether the
engine is used for power production or for propulsion, will be lower than if the two aforementioned processes
are ignored. Nonetheless, this extra complication has no bearing to cycle analysis.

From these results, it can be stated that the ZND cycle accounts for the internal energy in the shock
wave while the Humphrey and FJ cycles only account for heat addition. The results point out that the
performance parameters are largely underestimated in Humphrey and FJ cycles, which may have a drastic
effect on performance analysis.
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III. Precompression

As a general statement, all heat engines using compressible substances as the working medium require
that the substance be compressed before heat addition. Shock compression by itself may be sufficient to
initiate and perhaps sustain cyclic operation although no such practical devices are known to exist. Instead,
it is suggested here that sustained cyclic operation requires precompression. For a detonation engine, this
precompression need not be large, unlike conventional engines, so that the overall compression does not
exceed structural and material limits. The effect of a small amount of precompression is considered, with
compressor pressure ratios πc = 1–3 for a hydrogen–air mixture initially at STP.

The results are shown in Fig. 3 and Table 3. The cycle work remains fairly constant but the heat input
increases with increasing compression. The results show that the cycle efficiency decreases slightly with
increasing compression.

(a) p–v diagram. (b) T –s diagram.

Figure 3. ZND cycle with precompression. Isentropes not shown for clarity.

IV. Arbitrary Heat Release

Finally, instead of a specific reactant mixture, an arbitrary heat release is considered here. The nondi-
mensional heat release α ranges from 10 to 30, which covers most reactant mixtures of interest for PDEs.
Figure 4 shows the ZND cycles for this range of α with a precompression ratio πc = 3. The work out and

Table 2. Performance comparisons of the three cycles.

Humphrey Fickett–Jacobs Zel’dovich–von Neumann–Döring

Work out (MJ/kg) 0.709 0.834 1.40
Heat in (MJ/kg) 1.07 1.3 2.29
Efficiency (%) 66.5 64.3 61.2

7 of 10

American Institute of Aeronautics and Astronautics



heat in per cycle and the cyclic efficiency are listed in Table 4. Not surprisingly, the more energetic fuel
yields a higher cycle efficiency.

(a) p–v diagram. (b) T –s diagram.

Figure 4. ZND cycle with arbitrary heat release with πc = 3. Isentropes not shown for clarity.

Table 3. Performance of ZND cycle for stoichiometric hydrogen–air mixture initially at STP with precom-
pression.

πc = 1 1.5 2 2.5 3

Work out (MJ/kg) 1.40 1.45 1.45 1.45 1.42
Heat in (MJ/kg) 2.29 2.49 2.62 2.70 2.76
Efficiency (%) 61.2 58.5 55.6 53.7 51.5

V. Conclusion

An appraisal three thermodynamic cycles for modeling pulse detonation engines was performed. The
Zel’dovich–von Neumann–Döring cycle was deemed to be the most appropriate. This requires an assumption
of local thermodynamic equilibrium in the shock process. It was found that the heat addition process can
be modeled by a supersonic Rayleigh heating process. Additionally, it was suggested that the shock causes a
certain amount of work to be unavailable. The analysis was performed using a stoichiometric hydrogen–air
mixture initially at STP. Inclusion of precompression revealed that the efficiency decreases with compressor
pressure ratio. A generic heat addition process was also considered. In this case, it was found that an
energetic material with higher heat release yields an increased thermodynamic efficiency.
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A. The Rankine–Hugoniot Relationship and the Upper CJ Point

Other than available software such as CEA and Stanjan, the CJ state can also be obtained analytically.
The hugoniot in general is given by

p2

p1
=

(γ + 1) − (γ − 1)v1
v2

+ (2(γ − 1)α)

(γ + 1)v1
v2

− (γ − 1)
(3)

where α = qρ1/p1 is the nondimensional heat release parameter. By definition, the CJ point is located by
the tangent from the initial state to the reactive Hugoniot. The slope of the tangent is given by

m =
(1 − γ2)[(γ + 1) − (γ − 1)v1 + 2(γ − 1)α]

(γ + 1)vCJ − (γ + 1)
(4)

Now,

m =
pCJ − p1

vCJ − v1
(5)

Manipulating Eqs. (3)–(5) yields Eq. (1).
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